Matemaatika meie ümber

Matemaatika meie ümber

Kujutage ette, et istute hubases kohvikus ja vaatate linnatänavale. Kohv on ostetud, rehkendused kassa juures tehtud ja tundub, et matemaatika ongi tänaseks läbi.

Siis aga märkate, et tänaval puhub lõbus tütarlaps seebimulle ja kuigi need on küll peaaegu alati erineva suurusega, on need alati ühtmoodi ümmargused. Miks on seebimullid ümmargused? On see tüdruku või seebimullide süü?

Matemaatika1

Tegemist ongi juba füüsikalise maiguga lõbusa matemaatilise küsimusega. Tema vastuski on segu füüsikalistest teadmistest ja matemaatikast: füüsikast teame, et seebikile sulgeb endasse võimalikult suure ruumala; matemaatika aga näitab, et sellise printsiibi korral peab mull olema täpselt kerakujuline. Raamatus puudutame ringi sarnast omadust – sama ümbermõõduga kujunditest piirab ta suurima pindala [lk 97].

Matemaatikat võime näha ka kohviku teleekraanil, kus ülekantav jalgpallimäng on jõudnud penaltiseeriani.

Kas mängijad valivad väravanurga, kuhu nad palli löövad, mingi mustri järgi? Kas peaks valiku korral alustama penaltiseeriat lööjana või kaitsjana? Uurides möödunud penaltiseeriate tulemusi ja videokordusi, võime leida seaduspärasusi – sellega tegeleb matemaatiline statistika. Seaduspärasused kirjas, võime nende abil ehitada parima strateegia – sellele aitavad kaasa tõenäosuslikud kirjeldused [lk 392].

Kui lõpuks õnnestub ka kohvikust matemaatika juurest põgeneda, jääte tema küüsi jälle esimese lillepeenra kõrval. Matemaatiline kirjeldus aitab kirjeldada ja selgitada erinevate mustrite teket ja seeläbi lillenuppude ilusaid kujusid.

Näiteks teatud päevalillesortide õie paigutuses on 21 sinist ja 13 ookeanisinist spiraali. Need pole sugugi suvalised arvud – 21 ja 13 on Fibonacci arvud [lk 135], mis tulevad looduses tihti esile ning mille esinemist oskame ka selgitada.

Viimaks, kui hakkate lille nime ja peret oma nutitelefoni või arvuti abil kindlaks tegema, küsite jälle abi matemaatikalt: otsingumootorite tööprintsiibid on olnud esmalt kirjas matemaatilises keeles ning arvutite sise-elu põhinebki ainult ühtedel, nullidel ning nendega arvutamisel.

matemaatika2

 

Sulle võivad huvi pakkuda need õppematerjalid:

Ruutvõrrand

6.90 €
9. klass, Iseõppijale, Matemaatika

Üksliikmed, hulkliikmed ja tehted nendega

2.90 €
9. klass, Iseõppijale, Matemaatika

Liitmine 20 piires

2.90 €
1. klass, Eelkool, Iseõppijale, Matemaatika

Tasandilised kujundid

2.90 €
Gümnaasium, Iseõppijale, Matemaatika

8. klassi matemaatika teooriavideod

4.90 €
8. klass, Iseõppijale, Matemaatika

Funktsioonid ja nende graafikud

6.90 €
9. klass, Iseõppijale, Matemaatika

Liitmine ja lahutamine 20 piires

4.90 €
1. klass, Eelkool, Iseõppijale, Matemaatika

Ruutvõrrandi mõiste, ruutvõrrandi lahendivalem, ruutvõrrandi liigid

4.90 €
9. klass, Iseõppijale, Matemaatika

Hariliku murru kordamine

2.90 €
9. klass, Iseõppijale, Matemaatika

Numbrilised seosed

2.90 €
9. klass, Iseõppijale, Matemaatika

Lahutamine 20 piires

2.90 €
1. klass, Eelkool, Iseõppijale, Matemaatika

Kirjalik lahutamine

1.90 €
1. klass, 2. klass, 3. klass, Iseõppijale, Matemaatika

Kirjalik liitmine

1.90 €
1. klass, Eelkool, Iseõppijale, Matemaatika

Ratsionaalavaldised

6.90 €
9. klass, Iseõppijale, Matemaatika

Peastarvutamine I kooliastmele

2.90 €
1. klass, 2. klass, 3. klass, Iseõppijale, Matemaatika

Algebralised murrud

5.90 €
9. klass, Iseõppijale, Matemaatika

Liitmine ja lahutamine 10 piires

4.90 €
1. klass, Eelkool, Iseõppijale, Matemaatika

Kell ja kellaaeg

2.90 €
1. klass, Eelkool, Iseõppijale, Matemaatika

Ruutvõrrandi abil lahenduvad tekstülesanded

1.90 €
9. klass, Iseõppijale, Matemaatika

Ruumilised kujundid

3.90 €
Gümnaasium, 9. klass, Iseõppijale, Matemaatika

Matemaatika kui keel

Mõni ütlebki hoopis, et matemaatika ise on keel. Ja tõepoolest, matemaatika aitab ju kirjeldada maailma nagu iga teine keel ning lubab seeläbi omavahel suhelda ning informatsiooni vahetada.

Siiski erineb matemaatika keel tavapärastest keeltest. Tavapärases keeles on meil peaaegu iga ettejuhtuva objekti tarvis üks sõna või sõnapaar. Tavapärased keeled hoomavad ja kirjeldavad peaaegu kõike, millega kokku puutume, ent teevad seda tihti mitmetähenduslikult. Näiteks pall võib tähendada põhimõtteliselt nii ümmargust jalgpalli kui ka ovaalset Ameerika jalgpalli. Matemaatika otsustab kirjeldada vähem, aga see-eest täpsemalt – tihti vaid mõnda väikest detaili ühest või teisest objektist. Samas on need kirjeldused ise täpsed ja üheselt mõistetavad: palli kirjeldaksime kera või ellipsoidina, olenevalt tema kujust, ning mõlemail neist mõistetest on täpne ja ühene matemaatiline definitsioon [lk 44].

matemaatika3

Kuna matemaatikud kasutavad eraldiseisvat sõnavara, tundub vahel, et matemaatikud ei hooli üldse elust ning nende mõistetel ja käsitlusel kaob argipäevaga igasugune side. See on ka üks põhjuseid, miks matemaatikat on raske õppida [lk 30].

Siiski ei tähenda matemaatiliste mõistete abstraktsus, et neist ükskord kasu ei võiks tulla. Mõnikord me ei oska lihtsalt seoseid ümbritsevaga näha ning nad võivad alles aastasadade pärast välja tulla. Näiteks kompleksarvud [lk 89], mida peeti pikalt matemaatikute kummaliseks hulluseks, mängivad täna olulist rolli maailma kõige väiksemal skaalal kirjeldamisel – nende abil on hea kirja panna kõige väiksemate osakeste käitumist. Viimaks, kuigi tänagi peetakse üht ja teist osa abstraktsest matemaatikast üsna kasutuks, võime kinnitada, et kogu siin raamatus toodud koolimatemaatika on siiski igati eluline ning maailma kirjeldamisel ja mõistmisel asendamatu tööriist!

Matemaatika muutub ja areneb

Matemaatikas ei ole aga ainult keel – matemaatika uurib, muudab ja arendab ise sedasama keelt, milles ta end väljendab. Matemaatilised mõisted muutuvad ja

nende muutumises peitub ka suur osa matemaatikast. Isegi see, kuidas mõeldakse matemaatiliselt arvudest, on muutunud – kunagi ammu tunti ainult arve 1, 2, 3, …, siis leiti, et ½ on samuti üsna mõistlik arv, ja alles hiljuti lepiti, et ka –1 on arv või et lausa √–1 , mis reaalteljele ei mahu, sobib sama hästi üldmõiste arv alla [lk 78].

Võib tekkida küsimus, et kuidas saab muutuda see, mida tähendab arv. See on vajalik selleks, et tagada matemaatilise keele ühene mõistetavus ja selgus. Või teiselt poolt vaadatuna on matemaatikud aru saanud, et arvutada – liita ja lahutada, korrutada ja jagada – saab mitte ainult arvudega 1, 2, 3, 4, 5 …, vaid ka palju keerulisemate objektidega. See näitab, kuivõrd on arvude mõiste tegelikult suhteline – kas arvuks nimetame kõike, millega oskame arvutada, või peaksime arvudeks nimetama ainult objekte, mis koosnevad numbritest? Arvude arengust saab pikemalt lugeda aga arvuhulkade peatükist [lk 78].

Mis on matemaatika?

Matemaatika on tore kombinatsioon rangusest ja vabadusest. On küll üheselt öeldud, mida ühe või teise objekti all mõeldakse, ning on antud ranged reeglid nendega mängimiseks, kuid samas võib neidsamu objektide tähendusi ning reegleid alati väänata. Seda on eriti paslik teha siis, kui see toob kaasa rohkem seoseid, rohkem lihtsust, rohkem ilu ja rohkem mõistmist.

Siiski võib lugejat kummitama jääda õigustatud küsimus: kas oleme ikka vastanud, mis on matemaatika? Ei ole.

Nagu on raske öelda, mis ikkagi on õnn või mis tarkus,on raske ka öelda, mis on matemaatika. Tegemist on lihtsalt nii mitmetahulise ja laia mõistega. Naljakal kombel iseloomustab matemaatikat ennast veel just see, et ta ise tegeleb objektidega, mille korral saab küsimusele „mis?” väga täpselt vastata.

Lõppude lõpuks õpetab matemaatika meile, et meil on millegi defineerimisel ka parasjagu vabadust. Küllap pole sellest suurt kurja, kui igaühel on veidi omamoodi arusaam matemaatikast. Loodame, et see raamatuke aitab oma isiklikku arusaama leida ka lugejal.

matemaatika4

Head mängu iseloomustavad kolm omadust: ta on mitmekülgne, ta arendab ja ta võimaldab midagi õppida. Mõnikord räägitakse ka matemaatikast kui mängust. Ja kuigi sellega päris nõus olla ei tahaks – matemaatikast on palju enam kasu kui mõnest mängust –, siis on tal vähemalt kõik need kolm omadust igati olemas.

Matemaatika on mitmekülgne

Matemaatika peidab endas erinevaid ja tihti lausa vastandlikke külgi.

Matemaatikast võib leida täpsust, rangust ja kindlust. Niipea kui ühe matemaatiliselt korrektse selgituse või seose leiad, jääbki see õigeks – mitte nii nagu tuba, mida koristad ja koristad, aga mis ikka jälle mustaks saab. Nii ehitab iga matemaatika õppija oma teadmistele kindlat vundamenti.

Üksluine vundamendi ladumine tüütaks aga kindlasti ära. Vaja on ka ootamatusi ja üllatusi. Matemaatikas selle koha pealt kokku ei hoita – näiteks selgub, et lisaks meile juba tuntud kujunditele, nagu ruudud, ringid, kolmnurgad, leidub ka kujundeid, mille ümbermõõt on lõpmatu, aga pindala lõplik [lk 377]. Või näiteks tuleb välja, et kui ruumis on rohkem kui 23 inimest, siis on rohkem kui 50% tõenäosus, et kahel on  täpselt samal päeval sünnipäev [lk 407]. Või et naturaalarve 1, 2, 3, … on täpselt sama palju kui ratsionaalarve ehk arve kujus 34 või 392 ja nii edasi.

Paljudele  meeldib  aga  hoopis  loomingulisus,  meeldib vabadus. Seda on alguses ehk matemaatikas kõige raskem märgata – kus kogu selle korra ja täpsuse vahel jääb ruumi vabadusele? Aga samamoodi nagu kindel vorm soneti või haiku korral, ei piira ka matemaatilise mõtte  kindel vorm loomingulisust.  Oluline osa matemaatikast on uute seoste, uute mõtteviiside, uute objektide loomine. Kas pole vahva arusaam, et võime geomeetriast – kehade kujust ja kumerusest – mõelda sugugi mitte ainult kolmemõõtmeliselt, vaid kahekümnes, kolmekümnes või lausa tuhandes mõõtmes? Kuidas üks kolmekümnemõõtmeline kera välja võiks näha? Proovi ette kujutada! Meie näiteks ei oska…

matemaatika5

 

Miks õppida matemaatikat?

See artikkel on retsenseerimata.