Matemaatikute keel ja žanrid

Matemaatikute keel ja žanrid

Avades mõne matemaatikuõpiku, on esmane vaatepilt üsna segane: vähe sõnu, palju sümboleid, jooni ja skeeme ning mis kõige hullem, nad kõik on omavahel puseriti.

Näiteks võib matemaatika õpikus kenasti ette tulla lause: „Võrrandi x2 – 5x + 6 = 0 lahendid on x = 2 ning x = 3”  ning selle otsa on joonistatud veel  ka järgmine kõverik:

matemaatika11

Kui nüüd ei tea, mida tähendab võrrand, mis asjaloom on see x, mida peetakse silmas lahendi all ning mida paganat on sellel imelikul joonel kõige sellega pistmist, võibki kõik jätta üsna maavälise mulje ning südamerahuks tuleb õpik hoopis kinni panna juba enne, kui sisu kallale on jõutud.

Oskussõnad  

Nii hull lugu matemaatikaga siiski pole. Tõesti, matemaatikal on oma oskussõnad nagu näiteks võrrand, lahend, funktsioon või muutuja, mis tähistavad teatud matemaatilisi objekte või teisendusi. Need objektid ei eksisteeri küll alati reaalsel füüsikalisel kujul, aga siiski saab neist tihti üsna loomulikult mõelda.

Näiteks kui õpetaja räägib tasandist, võime mõelda lihtsalt paberilehele, lauapinnale või tasasele maastikule, olgugi et matemaatikas on tasandil täpsem tähendus. Samuti on ju raske öelda, mis on arv kolm füüsikalises maailmas, aga temast mõtelda pole raske – kutsu oma kolm sõpra külla!

Tundub, et oluline ongi tunda nii matemaatiliste mõistete rangeid kirjeldusi kui lihtsaid viise ning intuitsiooni nendest mõtlemiseks. Käesolevas osas tutvustame matemaatika alusmõisteid – muutujat, võrdust, hulka ja funktsiooni. Nendest arusaamine ning nendega harjumine on edaspidi suureks abiks.

Tähed ja sümbolid  

Lisaks oskussõnadele leiab matemaatikast palju tähti nagu a, x, y või n ning palju sümboleid nagu näiteks =, <, +, – ja ∞.

Sümbolid tuleb lihtsalt ära õppida, tähtede tähendus oleneb aga situatsioonist. Üldiselt kasutatakse tähti muutujate tähistamiseks [lk 48]. Muutujaid võiks muidugi tähistada ka sõnadega, aga tähtede kasutamine hoiab aega kokku. Lisaks aitavad tähed eraldada matemaatilist arutelu algsest elulisest kontekstist, muutes seeläbi tihti mõtlemist lihtsamaks ning laiemalt rakenduvaks.

Näiteks kui meile on öeldud, et klassis on poisse kolme võrra rohkem kui tüdrukuid, siis matemaatikud kirjutaksid selle järgmiselt:

p = t + 3

Miks nii? Võime öeldu ümber sõnastada nii: kui tüdrukute arvule veel kolm juurde liita, siis oleks neid sama palju kui poisse. Fraasi „sama palju” tähistatakse matemaatiliselt sümboliga = ja liitmist muidugi sümboliga +. Seega saame:

poiste arv = tüdrukute arv + 3

Ent see on ju ometigi suurem kirjavaev kui p = t + 3?

Pealegi on lühemas kujus selge, et sarnaselt saaks kirjeldada ka olukorda, kus poiste ja tüdrukute asemel on hoopis prussakad ja tarakanid.

Üksikute tähtedega võrrandid ei ole niisiis ainult kirjavaeva, vaid ka mõttevaeva kokkuhoidmiseks – võrrandiga ei pea enam siduma mingit konkreetset elulist situatsiooni ja võib tegeleda ainult tema matemaatilise sisu ja tõdedega.

Matemaatilised žanrid  

Matemaatilist teksti liigendavad ja ilmestavad pisikesed matemaatilised žanrid: räägitakse näiteks definitsioonist, väitest, tõestusest, teoreemist. Vahel satuvad veel seltsi ka sõnad nagu lemma või hüpotees. Järgnevalt kirjeldame, mida ühelt või teiselt neist žanritest oodata võiks.

Definitsioon

Definitsiooni all peetakse silmas mingi objekti matemaatiliselt täpset kirjeldust. See täpne kirjeldus võib aga olla antud mitmel erineval viisil, erinedes nii lihtsalt lauseehituselt kui ka sisulisemalt.

Näiteks võib positiivseid paarisarve defineerida järgmiselt (ei maksa end hirmutada lasta sõnade „definitsioon” või „defineerima” kalgist kõlast!).

Definitsioon 1: Positiivsed paarisarvud on arvud 2, 4, 6, 8, …

Definitsioon 2: Positiivne paarisarv on naturaalarv, mis jagub kahega.

Definitsioon 3: Iga positiivse paarisarvu saame, kui liidame arvule 0
juurde lõpliku arvu kordi arvu 2.

Need kõik kolm definitsiooni on samaväärsed – ehk iga arv, mis on näiteks definitsiooni 2 järgi paarisarv, on ka definitsioonide 1 ja 3 järgi paarisarv.

Võib tekkida küsimus, miks me peaksime defineerima sama asja mitut moodi? Esimese põhjusena võib esile tuua, et erinevad definitsioonid aitavad meil samast objektist mitut moodi mõelda ja nii saame selle olemusest paremini aimu. Näiteks arvude peatükis defineerime ringjoone lausa viiel erineval moel ning iga erinev viis kannab endas ka pisut erinevat tähendust [lk 96]. Lisaks võivad erinevad definitsioonid viia ka erinevate matemaatiliste arutelude ehk tõestusteni – mõnest definitsioonist lähtudes on tõestused lihtsamad kui mõnest teisest lähtudes. Lõpuks võivad erinevad definitsioonid viia lausa erinevate väideteni. Näiteks võib integraali [lk 340] defineerida mitmel matemaatilisel moel ja olenevalt definitsioonist võivad erinevate funktsioonide integraalid ka erineda! Hästi valitud definitsioonid lihtsustavad matemaatilist arutelu tublisti ja on ilusa matemaatilise maailma aluseks.

Väide

Väide tähendab matemaatikas sama, mida tavakeeleski. Väide võiks olla näiteks: „4 on paarisarv” või „5 on paarisarv”. Vastupidiselt tavaelu väidetele ei saa aga matemaatiliste väidete õigsuse üle lõputult vaielda – iga matemaatiline väide on kokkuvõttes kas tõene või väär.

Väidetega seoses võiks tähelepanu pöörata ka sellele, kui mitmekülgselt käivad matemaatikud ringi sõnaga „siis“. Kasutusel on väljendid „siis” ja „siis ja ainult siis” ehk „parajasti siis”. Nad tähistavad seda, kuidas teatud väited omavahel seoses on.

Näiteks vaatame kolme väidet.

1. Abu on klassi kõige pikem poiss.
2. Abu on poiss.
3. Kõik Abu poistest klassikaaslased on temast lühemad.

Kui kehtib esimene väide, SIIS kehtib ka teine väide – kui Abu on klassi kõige pikem poiss, siis kindlasti on Abu ka poiss. Samas kui kehtib teine väide, siis esimene väide ei pruugi kehtida: kui Abu on poiss, siis see ei tähenda, et ta oleks tingimata kõige pikem poiss. Seega SIIS lubab ühesuunalist järeldamist.

Kui aga lisame teisele väitele veel kolmanda, siis üheskoos on nad esimesega võrdväärsed. Selle kohta ütleme, et esimene väide kehtib PARAJASTI SIIS või samamoodi SIIS JA AINULT SIIS, kui samaaegselt kehtivad teine ja kolmas väide. Seega „parajasti siis” lubab kahesuunalist järeldamist ja näitab, et väited on samaväärsed.

matemaatika13

Tõestus

Nagu mainisime, on matemaatilised väited kas tõesed või väärad. Matemaatiliselt veenvat argumenti, mis väite tõesust või väärust põhjendab, nimetataksegi tõestuseks. Tõestust kasutatakse samas tähenduses ka igapäevaselt, aga matemaatikute rangustasemele teised valdkonnad siiski vastu ei saa. Siiski on ka matemaatikute endi rangusstandardid aja jooksul muutunud.

Näiteks argumentide eest, mida üks 18. sajandi matemaatik pidas rangeks matemaatiliseks tõestuseks, ei antaks praegu kindlasti matemaatikaeksamitel maksimumpunkte.

Tõestust peaks olema põhimõtteliselt võimalik kirja panna ka matemaatilise loogika täpses ja lakoonilises keeles, pika sümbolitemölluna. Natuke pikemalt räägime sellest hulkade peatükis [lk 61]. Õnneks päris nii rangeks enamasti aga ei minda ning peamiselt on ka matemaatilised tõestused siiski sõnalised arutelud, mis lähtuvad teatud aksioomidest, definitsioonidest ja tõestest väidetest ning teevad siis mitmeid järeldussamme.

Hoolimata sellest, et sõnal tõestus on ranguse maitse, on tõestuste leidmine vägagi loominguline protsess. Vahel viib tõestuse teekond algsetest väidetest ja eeldustest väga kaugele, enne kui ringiga taas lõppväiteni tagasi jõuab. Erinevad tõestused aitavad paremini mõista matemaatilist maailma, aga ka seal, kus matemaatika on eluga tihedalt seotud, aitavad tõestused mõtlemisele kaasa. Tõestusi saab omavahel võrrelda ja hinnata; neid saab luua, parandada ja kritiseerida nagu ikka ühele kenale loomingule kombeks.

Ka siit raamatust leiab mitmeid tõestusi, vahel on nad matemaatiliselt rangemad, vahel vähem ranged. Näiteks arutleme, miks arvu √2  ei saa väljendada kahe täisarvu suhtena kujus ab [lk 87] või miks kehtivad teatavad matemaatilised suurväited ehk teoreemid: trigonomeetria peatükis jõuame nii siinus- [lk 222] kui ka koosinusteoreemini [lk 224]. Esimene tõestus tuleb aga esile juba järgmises alapeatükis.

Teoreem

Teoreem on ehk matemaatika kõige austusväärsem žanr. Teoreemiks nimetatakse väidet koos matemaatiliselt täpse tõestusega. Õigupoolest julgetakse enamasti teoreemiks nimetada ainult piisavalt ägedaid väiteid koos oma ägedate tõestustega. Teoreemile antakse tihti ka tema avastaja nimi – kuigi peab tunnistama, et paljudel nimelistel teoreemidel pole nimeandjaga siiski suurt pistmist.

Üks kuulus teoreem on järgmine.

Teoreem: Leidub lõpmatult palju algarve. (Eukleides)

Sulgudes seisev „Eukleides” tähistab tõestuse autorit ja tihti nimetataksegi seda teoreemi Eukleidese teoreemiks.

Meenutame, et algarvud on naturaalarvud, mis jaguvad ainult enda ja ühega – nagu näiteks 2, 3 ja 5. Arvud 4 ja 6 aga pole algarvud, sest 4 = 2 · 2 ja 6 = 2 · 3. Algarvud on mingis mõttes kõikide teiste arvude baasiks. Neid ennast ei saa tegurdada, aga kõik teised arvud võime esitada algarvude korrutisena. Näiteks võime algarvude korrutisena kirjutada 8 = 2 · 2 · 2 ja 21 = 7 · 3.

Üritame lugejat selles teoreemis järgnevalt ka veenda. Meenutame, et  arutlust, mis veenaks ka kõige skeptilisemat matemaatikut, nimetatakse tõestuseks ning sisuliselt annamegi siin tõestuse.

Tõestus:

Alustuseks märgime, et algarve kindlasti leidub – näiteks 2, 3 ja 5 on algarvud ja nii mõnigi veel. Oletame, et oleme leidnud juba n erinevat algarvu p1, p2, …, pn. Kas leidub mõni veel? Kuidas teda leida?

Uus algarv ei tohiks kindlasti jaguda ühegagi juba teadaolevatest arvudest. Kõige lihtsam oleks siis vaadata arvu A, mis on ühe võrra suurem kui kõikide seni leitud algarvude korrutis:

matemaatika14

Nii ei saa see arv kindlasti jaguda ühegagi juba leitud algarvudest, sest nendega jagamisel jätab ta jäägi 1.

Kui see arv ei jagu enam ühegi teise arvuga peale ühe ja iseenda, ongi tegemist ühe uue algarvuga. Nüüd, kui tegemist ei ole algarvuga, siis nagu meenutasime, saab ta kirjutada erinevate algarvude korrutisena. Ükski neist algarvudest ei ole meile veel aga teada!

Nii olemegi leidnud vähemalt ühe uue algarvu. Veelgi enam, ükskõik kui palju algarve me juba ei teaks, võime iga kord kasutada sama argumenti ja leida vähemalt ühe veel. Seega ongi algarve lõpmatult palju.

Selle väite ja tõestuse peale olevat tulnud Eukleides, kuulus Vana-Kreeka matemaatik, kes armastas geomeetriat ja arve. Tänaseks on sellele teoreemile juba kümneid tõestusi ja õigupoolest teame algarvude kohta nüüd palju rohkem. Teame näiteks üsna täpselt, kui palju leidub mingist kindlast arvust, näiteks tuhandest väiksemaid algarve. Palju küsimusi on aga endiselt ka vastamata.

Muutuja