Ümbermõõt, pindala ja ruumala

Alustame väikese mõtisklusega teemal, mida üldse tähendab mõõtmine. Mida me täpselt teeme, kui igapäevaelus asju mõõdame? Üks võimalus on mõõtmisest mõelda kui teatavast võrdlusest mingite kokkulepitud suurustega. Joonlauale või mõõdulindile on täpselt kirja pandud, mida võime lugeda üheks sentimeetriks ja mida üheks meetriks, ning nende kokkulepitud näidissuurustega võrreldes leiamegi oma jala- või ninapikkuse. Sarnaselt võime kasutada mõõtmiseks ka mõnda nööri, mille pikkuseks teame üht meetrit, keraamikaplaati pindalaga sada ruutsentimeetrit või miks mitte ka poolt liitrit vett: idee on ikka ja jälle sama, leiame, kui palju kordi meile juba teatud suurus mingit pikkust, pinda või ruumala katab. Seega on meil vaja mõõtmiseks mõnda mõistlikku „etaloni”, mille suurust tema lihtsuse tõttu teame, ja seejärel vilumust temaga hästi katta erinevaid pikkuseid või pindu. Järgnevalt näitame, millised on matemaatilised „etalonid” ja kuidas neid kavalalt kasutada.Päriselus käib iga mõõtmisega kaasas ka teatav mõõteviga – oleme ise mõõtmisel ebatäpsed ja ka kehad ise pole päris ideaalse kujuga. Siin peatükis tegeleme aga matemaatikaga, kus saame kõik mõõtmised absoluutse täpsuseni viia.

Matemaatilised etalonid: sirglõik, ruut, kuup

 

Ümbermõõdu või joonepikkuse mõõtmiseks on meil varnast võtta suur hulk häid mõõdutükke: pisikesed sirglõigud erinevate pikkustega. Ilmselgelt piisab neist, et mõõta iga sirglõikudest koosneva murdjoone pikkust:

Aga tegelikult ei valmista muret ka kõverjooned, kui oleme nõus väikest viga sallima: nimelt jagades kõverjoone väga pisikesteks tükkideks on iga tükk peaaegu sirgjoon:

Sellisele lähendamisele annab matemaatilise tähenduse integreerimine [lk 340] ja tuleme selle juurde veel hiljem tagasi.

Pindalade leidmisel valime samuti kõige lihtsama võimalikest etalonikomplektidest: erineva küljepikkusega ruudud. Esmalt peaksime end aga veenma, et teame iga etaloni enda pindala.

Õnneks pole see väga keeruline: niipea kui teame, et näiteks ühikruudu pindala on 1, võime teisi ruute võrrelda ühikruuduga ja joonis aitab meil veenduda, et küljepikkus a annab pindalaks a2:

Matemaatilise tõestuse tarvis peaks muidugi olema pisut hoolikam.

  • Naturaalarvuliste küljepikkustega ruutude jaoks võime kasutada joonisel toodud strateegiat.
  • Naturaalarvude pöördarvude
    figury4

    jaoks kasutame joonisel toodud strateegiat vastupidi: täidame ühikruudu ruudukestega küljepikkusega

    figury4.
  • Kasutades nüüd seda teadmist, võime jällegi joonist järgides leida pindala kõikide ratsionaalarvuliste küljepikkuste
    figury5

    jaoks.

  • Viimaks peame midagi tegema ka irratsionaalarvuliste küljepikkustega. Siin on tarvilik pisut teistmoodi, kuid üsna levinud strateegia, millest kirjutame üldisemalt funktsioonide pidevuse all [lk319] –idee on selles, et kui mõni reaalarvuline suurus muutub pidevalt, siis tema määramiseks piisab ainult ratsionaalarvuliste väärtuste teadmisest.

Selle argumendi võib aga siinjuhul kergesti ka üksipulgi kirja panna.

Idee on selles, et iga irratsionaalarvu a jaoks võime leida ratsionaalarvude jada qn, mille piirväärtuseks on meie valitud irratsionaalarv. Kuid iga ratsionaalarvulise küljepikkusega qn ruudu pindala me juba teame – see on qn2. Lõpuks, kui arvud qkoonduvad arvu a, siis nende arvude ruudud koonduvad arvu, a2 mis annabki soovitud tulemuse. 
Võib ka küsida: miks peaks ühikruudu pindala olema 1? Pragmaatiline lugeja võib siinkohal otsustada, et see tundub mõistliku valikuna, ja las filosoofilisem lugeja mõtleb, mis ta mõtleb. Ruumalade tarvis kasutame kuupe ning näeme sarnaselt eelnevaga, et kuubi küljepikkusega ruumalaks on a3.

 

Hulknurkade pindalad

 

Ruut ja ristkülik

 

Mõtleme nüüd, kuidas oma ruudukujulise jupi abil välja nuputada ristküliku pindala. Kui küljepikkused on piisavalt sõbralikud, on see lihtne: näiteks jooniselt näeme, et külgedega 3 ja 5 ristküliku pindala on 3 · 5 = 15 ning külgedega 3ja 12 ristküliku pindala on 314.

Ilmselt pole raske märgata, et näiteks kõik ratsionaalarvuliste küljepikkustega ristkülikud on sõbralikud: saame alati leida mingi imepisikese ruudu, mille abil ristkülik ruudukestega täielikult katta. Iga kord saame tulemuseks, et a · b ristküliku pindala on täpselt S = a · b.

Edasi peame taas kasutama ruudu küljepikkuse leidmisel mainitud „pidevuse printsiipi” – kui meil on mingi pidevalt muutuv reaalarvuline suurus, siis piisab sellest, kui me teame tema väärtusi ainult ratsionaalarvulistes kohtades. Nii võimegi väita, et iga a · b ristküliku pindala on

figury7
.

Kolmnurk

.

Kolmnurkadest on kõige lihtsam alustada täisnurksete kolmnurkadega – neid kaks tükki kokku pannes saame täpselt ristküliku:

Siit pole muidugi raske järeldada, et täisnurkse kolmnurga pindala on pool moodustunud ristküliku pindalast ehk

figury9

kus a ja b on tema kaatetite pikkus.

Aga nüüd võime ju etalonina juba kasutada ka täisnurkseid kolmnurki ja see teeb iga teise kolmnurga pindala leidmise väga lihtsaks: tõmbame lihtsalt kolmnurka mõne kõrguse ja jagame ta kaheks täisnurkseks kolmnurgaks!

Isegi kui joonised on erinevad, näeme, et järeldus on nii kolmnurga sisse kui kolmnurgast välja jääva kõrguse puhul sama – iga kolmnurga pindala on

figury11

kus a on mõni kolmnurga küljepikkus ja h tema vastastipust tõmmatud kõrguse pikkus.

 

Rööpkülik ja trapets

 

Rööpküliku võime jagada lihtsalt kaheks kolmnurgaks. Nii näeme, et rööpküliku pindala on S = a · h, kus on tema vaadeldav küljepikkus ning h nende külgede vaheline kaugus. See tuleneb muidugi sellest, et mõlema kolmnurga pindala on eelmise osa põhjal

figury13

Nagu jooniselt näeme, võime rööpküliku pindala tuletada veel vähemalt kahel erineval moel:

Ja trapets? Sama lugu, kasutame seniseid etalone, täisnurkseid kolmnurki ja ristkülikut, ning saamegi väikese kavaluse abil õpetaja väljakuulutatud tulemuse.

Tegelikult saame ju nüüd leida ka iga viisnurga, kuusnurga või ka kakssadanurga pindala, kui ainult kannatust jagub: võime nad ju alati jagada ühel või teisel viisil kolmnurkadeks (nii kuidas mugavam on) ja kolmnurkade pindalad kokku liita.

 

Ringi ümbermõõt ja pindala

 

Ring on oma olemuselt üks lihtsamaid ja ilusamaid kujundeid. Nagu nägime kuulsate arvude peatükis, võib teda ka mitmel moel defineerida ning temast mitmel moel mõelda [lk 96]. Siiski, hoolimata sellest, et ring on peale vaadates ilus ja lihtne kujund, peab temaga matemaatiliselt ümber käima teistmoodi ja isegi pisut keerulisemalt kui hulknurkadega.

Ringi ümbermõõduga pole asi siiski liiga hull. Kuna π on juba defineeritud kui ümbermõõdu ja diameetri suhe

figury17

siis ümbermõõdu P saabki sealt lihtsalt avaldada:

figury18

Traditsiooniliselt kirjutatakse see välja ringi raadiuse abil:

figury19

Kuidas aga leida ringi pindala?

Meie seniseid pindalade etalone on siin raskem ära kasutada – kõik nad olid nurgelised, samas kui ringjoon on ju kenasti kaardus. Seega peame olema kavalamad.

Üks võimalus on siiski kasutada juba teadaolevaid etalone, kuid seda koos integraaliga. Tuletame meelde, et integraali abil saame lähendada kujundite pindalasid, jagades kujundi õhukesteks ristkülikukujulisteks juppideks ning liites nad kokku. Piirprotsessis, kus õhukesi tükke on järjest enam, saamegi vastuseks täpse pindala. Sellest on meil natuke pikemalt juttu integraali peatükis [lk 347].

Siin kasutame vägagi sarnast ideed, ainult loobume kujundi ristkülikuteks jagamisest ning jagame ta hoopis väga paljudeks peenikesteks rõngasteks paksusega h, mis on õige sarnased juba ringidele. Nende raadiused muutuvad siis 0-ist kuni r-ini sammuga h.

Iga väike rõngas panustab algringi pindalasse umbkaudu 2πxh, kus x on näiteks rõnga välimise ringi raadius. Tõepoolest, kui paksus h on väga väike, siis ei pea rõnga sise- ja välisraadiust eristama. Pindala leidmiseks peame seejärel liitma kokku kõik need lõpmata paljud ümbermõõdud ja saame

figury21

Siin x1, … xn moodustavad aritmeetilise  jada vahega h ja seega lähendavad lineaarfunktsiooni. Nüüd peaks meenuma, et see on juba väga sarnane meie määratud integraali kirjeldusele. Tõepoolest, piirprotsessis, kus ketaste paksus h→0, võimegi pindala kirja panna määratud integraali abil [lk 340]:

figury22

Edasi jääb vaid integreerida ja leiamegi kuulsa ringi valemi:

figury23

Kui tahame lugu veel enam integraali ja tuletise raamistikus näha, võib mõelda, et ringi pindala muutumise kiiruse annab just tema ümbermõõt. See on üsna loomulik, kuna ringi raadiust õige pisut, võrra suurendades, muutub ringi pindala umbes hP võrra. h oleks selles kontekstis seega „aja parameetriks” ning kiiruse annakski ümbermõõt P.

Võib korraks ka mõtiskleda, kas see valem meile üldse usutav näib. Järgnev joonis, kus on antud neli ruutu küljega 1 ning ring raadiusega 1, võib veenda, et ringi pindala võiks tõesti olla umbes 3 kuni 4 korda (ja seega umbes π korda) suurem ühe ruudu pindalast.

 

Ruumiliste kujundite pindalad

 

Lisaks kahemõõtmelistele kujunditele võib meid muidugi huvitada ka mõne kolmemõõtmelise kujundi välispinna suurus.

Hulktahukate ehk igasugu erinevate risttahukate ja püramiididega, mille tahud on hulknurksed, käib asi üsna lihtsalt: lõikame kujundi mööda servasid lahti ning arvutame iga tahu pindala eraldi välja. Liites need kõik kokku, saamegi kogu pindala.

Näiteks kolmnurkse põhjaga püramiidi külgpindala leidmiseks peame kokku liitma nelja kolmnurga pindala.

 

Koonuse pindala

 

Üldiselt läheb kumeramate kehadega olukord keerulisemaks, aga koonuse korral aitab siiski üsna sarnane strateegia. Alustuseks võime koonuse pinna jagada kaheks – saame ringikujulise põhja ning teatava kujuga külgpinna.

Kuna ringi pindala juba oskame leida, on põhja pindala arvutamine kerge. Aga kuidas leida selle allesjäänud koonuselise tüki pindala?

Seegi kord aitab meid veel lõikamine ning tasandile asetamine. Nimelt kui lõikame koonuse külgpinna mööda moodustajat – ehk mööda suvalist koonuse tippu ja põhja äärt ühendavat sirglõiku – lahti ja laotame tasandile, saame ilusa ringi sektori.

See sektor moodustab teatava osa suurest ringist raadiusega m, kus m on siis niinimetatud koonuse moodustaja. Selle algse ringi pindala oskame jälle lihtsalt leida:

figury28

Seega oleks vaja lihtsalt aru saada, kui suure osa moodustab laiali laotatud sektor kogu ringist. Ringjoone sektori pindala suhe kogu ringi pindalasse on aga täpselt sama kui sektori kaarepikkuse suhe kogu ringjoone ümbermõõtu. Kuna kogu ringi ümbermõõt on meile teada (2), siis piisab lihtsalt sektori kaare pikkusest. Sektori kaare pikkus on aga täpselt koonuse põhja ümbermõõt! Seega, kui põhja raadiuseks on näiteks r, siis saame põhja ümbermõõduks ja ka kaare pikkuseks 2.

Kui jagame saadud tulemused, näeme, et sektori pindala moodustab kogu pindalast

figury31

Nüüd võime külgpindala leida, korrutades saadud suhte läbi suure ringi pindalaga:

figury32

Liites põhja pindala:

figury33

Võime leida ka koonuse täispindala

figury34

 

Kera pindala

 

Kera pindala leidmiseks aga mõnest lõikamisest enam tõesti ei piisa. Võite proovida apelsinikoort mõistlikult laua peale laiali laotada, nii et ükski koht õhus ei oleks – lihtne see ei ole. Tuleb kasutada juba ringi pindalast tuttavat integreerimise strateegiat.

Intuitiivselt tahaksime ka seekord pinna rõngasteks jagada ning seejärel nende rõngaste pindalad osavalt kokku liita.

Ringi pindala leidmisest on olukord pisut keerulisem, kuna rõngaste pindalad ise ei muutu enam ilusalt ühtlaselt.

Seega piirdume siinkohal lihtsalt kera pindala valemiga:

figury37

Kera ruumala juures anname siiski ka ühe viisi selle pindala leidmiseks.

 

Mõned ruumalad

 

Laias plaanis võime ruumalade leidmisel käituda üsna analoogiliselt pindalade juhule: alustame kuubi ruumalast, siis leiame risttahuka ruumala, seejärel rööptahuka ruumala ja nii edasi.

Natuke keerulisemaks läheb püramiidide korral, aga siiski aitab natukene kavalust meid hädast välja.

Näiteks toodud jooniselt näeme, kust tuleb vähemalt ruutpüramiidi korral kurikuulus üks kolmandik: nimelt saame täita ühikkuubi kuue võrdse ruumalaga püramiidiga, mille kõrgus on täpselt pool kuubi küljest.

Kõikide võimalike eripüramiidide jaoks samasuguste konstruktsioonide väljanuputamine osutub juba aeganõudvaks, kuigi on ilmselt võimalik nii kaua, kuni aluspinnaks on mõni hulknurk. Jällegi on idee alustada lihtsamatest püramiiditüüpidest ning samm-sammult minna üldise kuju poole – see osutub üsna pikaldaseks, kuna peame sisuliselt iga püramiidi külge ükshaaval lihtsamast keerulisemaks muutma.

Võib siiski kinnitada, et püramiidi ruumala valem jääb samaks:

figury40

kus Spõhi on seekord püramiidi aluse pindala ning tema vastastipust tõmmatud kõrgus. Seesama valem jääb kehtima ka siis, kui aluseks on hoopis ring.

Toodud valemi sarnasus kolmnurga pindala valemiga võib mõtlema panna, kas neil kahel on mingi seos – räägime mõlemal korral ju alusest ja kõrgusest ning eesolev kordaja paistab täpselt seoses olevat ruumimõõtmete arvuga. See seos põhineb tegelikult väga lihtsal mõttel, mida juba ka mainisime.

Nimelt nägime ringi pindala juures, et ringi raadiust suurendades võime mõelda, et ringi pindala kirjeldava funktsiooni tuletiseks on tema ümbermõõt.

Samamoodi võime mõelda, et mõõtes kolmnurga kõrgust, on kolmnurga pindala muutumise kiiruseks tema alumise külje pikkus. Kui aga leiame püramiidi ruumala kõrgusest sõltuvalt, on muutumise kiiruseks hoopis tema põhja pindala:

Nüüd on lihtne veenduda, et kolmnurga aluse pikkus sõltub tema kõrgusest lineaarselt – ehk seda võib kirjeldada funktsiooni abil. Püramiidi pindala aga muutub kõrguse suhtes nagu ruutfunktsioon ax. Esimese integreerimisel saame ette kordaja 12, sest kui seame integreerimisega kaasaskäiva konstandi nulliks, saame

figury43

ning teise integreerimisel leiamegi kordaja 13?:

figury44

Täpsemat näidet esimesest viisist nägime ringi pindala leidmisel, teise näite teeme läbi nüüd kera ruumala arvutamiseks.

 

Kera ruumala

 

Kera ruumala on jällegi raske leida lihtsalt nurklike etalonide abil. Peame kasutama ringi pindala puhul abiks olnud strateegiat – integreerimist. Teisisõnu lähendame kera paljude õhukeste ketastega, leiame nende ruumalad ning liidame nad kokku. Piirprotsessis saame integraali, mis annabki meile koguruumala [lk 347].

Tähistame tähega x horisontaalset kaugust kera keskpunktist ning tähega y kera pinnal asuva ringjoone raadiust tollel kaugusel. Ketta, mille välimine äär on kaugusel x ning mille paksus on h, ruumala on umbkaudu h · πy2 ehk πhy2.

Selle ringjoone raadiuse y, mis sõltub x-ist ja kera raadiusest r, saame avaldada Pythagorase teoreemi kaudu: y2 = r2 – x2.

Neid kettaid aina väiksema paksuse korral kokku liites saame nagu kera pindala leidmiselgi integraali [lk 340], seejuures vasemalt äärelt paremale välja jõudmiseks muutub horisontaalne kaugus x vahemikus [–r, r]. Seega võime ruumala kirjutada järgmise integraalina:

figury48

Seda oskame kooliõpiku abil juba arvutada:

figury49

Tulemuseks saamegi kera ruumala valemi

figury50

Huvitav on see, et sellest kera ruumala valemist saame tegelikult nüüd tuletada ka kera pindala valemi. Nimelt võiksime ju ka mõelda, et kera koosneb mitte ketastest, vaid hoopis sfäärilistest kihtidest:

Seega saaksime kera ruumala, kui liidaksime kokku nende sfääriliste kihtide ruumalad. Keskpunktist kaugusel x asuva peenikese sfäärilise kihi ruumala oleks nüüd umbes Sxh, kus Sx on raadiusega x kera pindala ning h siis õhukese sfääri paksus. Seega võiksime analoogiliselt eelnevaga kirjutada ruumala integraalina üle nende sfääriliste kihtide:

figury52

See aga tähendab täpselt, et kui vaatame kera ruumala kui funktsiooni raadiusest, siis on kera pindala selle funktsiooni tuletis! Seega kui teame juba kera ruumala, võime leida tema pindala, kasutades integraali ja tuletise vahelist seost.

Tõepoolest, nägime ju tuletise ja integraali vahelise seose peatükis [lk 352], et ühe funktsiooni ƒ(x) integraal annab meile vastuseks ühe niinimetatud algfunktsiooni: funktsiooni, mille tuletis on igas punktis võrdne funktsiooniga ƒ(x). Nüüd aga, vaadates kera pindala funktsioonina raadiusest, annabki ruumala ühe võimaliku algfunktsiooni. Seega peame pindala leidmiseks ühes punktis lihtsalt leidma ruumala tuletise samas kohas. Valemites:figury53

 

Kochi lumehelves

 

Muidugi tahaksime, et matemaatikas oleks kõik nii, nagu meie vaist seda õigeks peab. Siiski selgub, et niipea kui mõne definitsiooni rangelt matemaatiliselt kirja paneme, alustab ta justkui oma elu, libiseb meie käe alt välja ja korraldab midagi üllatavat. Tihti peame seejärel matemaatikaga paremaks läbisaamiseks oma intuitsiooni ümber kujundama.

Kirjeldame järgnevalt ühte kujundit, mis näibki algul pigem mõistusevastane: tal on lõplik pindala, aga lõputu ümbermõõt. Seda kujundit kutsutakse Kochi lumehelbeks.

Kochi lumehelbe saamiseks peame läbima järgmise protsessi:

  • alustame võrdkülgsest kolmnurgast,
  • esimesel sammul jaotame iga külje kolmeks võrdseks osaks ja ehitame iga külje keskmisele kolmandikule väljapoole võrdkülgse kolmnurga, nagu jooniselt näha, võib nüüd eristada kuut väiksemat kolmnurka, millest igal on kaks väljapoole avatud külge,
  • edasi konstrueerime analoogselt eelnevaga iga väljapoole avatud külje keskele uuekolmnurga,
  • Aina jätkame ja jätkame protsessi uute, väiksemate külgedega…

Nagu jooniselt näeme, tekib nii midagi lumehelbe sarnast. Kui protsessi kangekaelselt jätkata, näeb tekkiva kujundi piirjoon iga suurusega luubi all välja umbes ühesugune (alati paistab, et on üks külg, mille keskele on konstrueeritud kolmnurk, ja siis veel natukene väikest müra):

Mis võiks olla tekkiva kujundi ümbermõõt? Kui alguses on kolmnurga ühe külje pikkus 1, siis pärast esimest etappi oleme külje asendanud 4 lõiguga, millest igaühe pikkus on 13 ehk kokku on tema pikkus 43. Igal järgmisel etapil on 4 korda rohkem lõike, kuid iga lõik on 3 korda lühem ehk lõikude kogupikkus suureneb 43 korda.

Seega pärast sajandat konstruktsiooni on lõikude kogupikkus juba

figury56

ning protsessi lõpmatult jätkates muutub ka kujundi ümbermõõt lõpmata suureks:

figury58

Lähemalt vaadeldes selgub samas, et pindala ei saa sellel kujundil väga suur olla ja kindlasti peab ta olema lõplik. Nimelt mahub Kochi lumehelves näiteks alati joonisel toodud sinisesse ristkülikusse:

Pärast mõningat arvutustööd selguks, et tema pindala on täpselt

figury59

Kui nüüd järele mõtleme, miks meile toodud olukord paradoksaalne tundub, siis ilmselt on põhjus väga lihtne: igapäevaelus me ilmselt sellist kujundit kohanud pole, kus ümbermõõt oleks lõpmatu ning pindala lõplik. Meie masinavärk ei luba lihtsalt selliseid pikkuseid mõõta: päriselus ei ole meil tegelikult ju kasutada lõpmatu suurendusega luupe ning iga lõpliku suurusega luubi korral tunduks ka Kochi lumehelbe ümbermõõt lõplik. Samuti paistab, et tänane füüsika ei tahaks hästi selliseid kujundeid lubada.

Siiski, matemaatikat need kaalutlused ja kitsendused ei sega – võime sama vabalt leida ka näiteks lõpmatu pindala ja lõpliku ruumalaga kujundeid (näiteks niinimetatud Gabrieli pasun) ning teisi sarnaseid veidrikke.

 

Permutatsioonid ja faktoriaal