Permutatsioonid, kombinatsioonid, variatsioonid
Permutatsioonid on n elemendilise hulga elementidest moodustatud n-elemendilised järjestatud osahulgad.
Permutatsioonide arv leitakse valemiga Pn = n!
Kirjutist n! loetakse – “n faktoriaalis” ja arvutatakse järgmise reegli järgi:
n! = 1 · 2 · 3 … (n – 1) · n.
Jätke meelde, et 0! = 1 ja 1! = 1.
Sulle võivad huvi pakkuda need õppematerjalid:
Kirjalik lahutamine
Ratsionaalavaldised
Ruumilised kujundid
Peastarvutamine I kooliastmele
Kell ja kellaaeg
Liitmine ja lahutamine 20 piires
Valik harjutusülesandeid matemaatika riigieksamiks
Geomeetria
Protsendid põhikooli matemaatikas
Ruutvõrrand
Ruutjuur, tehted ruutjuurtega
Protsendi rakendused igapäevaelus
Hariliku murru kordamine
Algebralised murrud
Kirjalik liitmine
Tasandilised kujundid
Ruutvõrrandi abil lahenduvad tekstülesanded
Funktsioonid ja nende graafikud
Liitmine ja lahutamine 10 piires
NUPUTAME KOOS! Tasapinnalised kujundid
Näited:
1) 1! = 1, 3! = 1 · 2 · 3 = 6 ja 5! = 1 · 2 · 3 · 4 · 5 = 120.
2) Neljast tähest (k, a, r, u) on võimalik moodustada tähtede ümberpaigutamise teel 4! = 24 erinevat sõna.
3) 13 õpilasega klassis on võimalik teha 13! = 6227020800 erineva järjestusega õpilaste nimekirja.
Kombinatsioonid n-elemendist k-kaupa on n-elemendilise hulga k-elemendilised osahulgad.
Kombinatsioonide arvu leidmisel elementide järjestus pole oluline, s.t. kui kombinatsioon {Jüri, Mari} on olemas, siis {Mari, Jüri} eraldi kombinatsioonina arvesse ei lähe.
Näited:
1) kümnest inimesest on võimalik moodustada erinevaid kolmeliikmelisi rühmi .
2) 30 õpilasega klassis on võimalik kaks korrapidajat ametisse määrata erineval viisil.
Variatsioonid n elemendist k kaupa on n-elemendilise hulga k-elemendilised järjestatud osahulgad.
Näited:
1) 30 lehekandja hulgast on võimalik ametisse määrata lehekandja ja vanemlehekandja erineval viisil;
2) kuueliikmelisest võistkonnast saab neli teatesuusatajat välja valida erineval viisil.
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!