Bernoulli valem
Bernoulli valem
Kui sündmuse A tõenäosus igal katsel on p, siis tõenäosus, et n katse korral sündmus A toimuks k korda leitakse valemiga
Pn,k = Cn,k · pk · qn−k, kus
q = 1 − p.
Lihtne ülesanne osutub tülikaks
Kivipallur tabab igal viskel korvi tõenäosusega 0,7. Kui suur on tõenäosus, et Kivipallur 20 viske korral tabab korvi täpselt 12 korda?
Sulle võivad huvi pakkuda need õppematerjalid:
Üksliikmed, hulkliikmed ja tehted nendega
Algebralised murrud
Ruutvõrrand
Väike protsendiamps
Numbrilised seosed
Lahutamine 20 piires
Funktsioonide graafikud
Kell ja kellaaeg
Harjutusülesandeid matemaatika riigieksamiks
Geomeetria
Ruumilised kujundid
Liitmine ja lahutamine 20 piires
Ratsionaalavaldised
Tasandilised kujundid
Funktsioonide graafikute lõikepunktide leidmine
Hariliku murru kordamine
Ruutjuur, tehted ruutjuurtega
Kirjalik liitmine
Protsendid põhikooli matemaatikas
Protsendi rakendused igapäevaelus
Kõigepealt lahendame selle ülesandega sarnase ülesande.
Kivipallur tabab igal viskel korvi tõenäosusega 0,7. Kui suur on tõenäosus, et Kivipallur nelja viske korral
a) ei taba üldse korvi,
b) tabab täpselt ühe korra,
c) tabab kaks korda,
d) tabab kolm korda,
e) tabab kõik visked?
Kivipallur tabab tõenäosusega p = 0,7 ja ei taba tõenäosusega q = 1 – 0,7 = 0,3.
Kirjutame välja kõik võimalused, kuidas Kivipallur võib visata, tähistades tabava viske T-ga ja möödaviske M-ga:
TTTT – kõik visked tabavad
TTTM TTMT TMTT MTTT – kolm tabavat viset
TTMM TMTM MMTT TMMT MTMT MTTM – kaks tabavat viset
TMMM MTMM MMTM MMMT – üks vise tabab
MMMM – kõik visked lähevad mööda
Nüüd saame leida otsitavad tõenäosused:
a) Kivipallur ei taba ühtegi korda:
P4,0 = 0,3 · 0,3 · 0,3 · 0,3 = 0,34 = 0,0081;
b) Kivipallur tabab täpselt ühe korra:
P4,1 = 0,7 · 0,3 · 0,3 · 0,3 + 0,3 · 0,7 · 0,3 · 0,3 + 0,3 · 0,3 · 0,7 · 0,3 + 0,3 · 0,3 · 0,3 · 0,7 = 4 · 0,7 · 0,33 = 0,0756;
c) Kivipallur tabab täpselt kaks korda
P4,2 = 0,7·0,7·0,3·0,3 + 0,7·0,3·0,7·0,3 + 0,3·0,3·0,7·0,7 + 0,7·0,3·0,3·0,7 + 0,3·0,7·0,3·0,7 + 0,3·0,7·0,7·0,3 = 6 · 0,72 · 0,32 = 0,2646;
d) Kivipallur tabab kolm korda
P4,3 = 0,7 · 0,7 · 0,7 · 0,3 + 0,7 · 0,7 · 0,3 · 0,7 + 0,7 · 0,3 · 0,7 · 0,7 + 0,3 · 0,7 · 0,7 · 0,7 = 4 · 0,73 · 0,3 = 0,4116;
e) Kivipallur tabab kõik visked
P4,4 = 0,74 = 0,2401.
Kontrollimiseks liidame saadud tõenäosused P4,0 + P4,1 + P4,2 + P4,3 + P4,4. Tõenäosuste summa on 1, ja nii peabki olema, sest Kivipallur tabab 4 korda, kolm korda, kaks korda, ühe korra või ei taba üldse. Kõik võimalikud variandid on arvesse võetud.
Kas seda tülikalt pikka lahenduskäiku ei saa asendada lühema lahendusega?
Kui palju on üldse variante?
Eespool olevast ülesande lahendusest näeme, et
4-st viskest 0 tabamuse saamiseks on 1 võimalus s.o. C4,0;
4-st viskest 1 tabamuse saamiseks on 4 võimalust s.o. C4,1;
4-st viskest 2 tabamuse saamiseks on 6 võimalust s.o. C4,2;
4-st viskest 3 tabamuse saamiseks on 4 võimalust s.o. C4,3 ja
4-st viskest 4 tabamuse saamiseks on 1 võimalus, s.o. C4,4.
Kas selle arutelu põhjal saab ilma variante välja kirjutamata öelda, kui palju on võimalusi 12 tabava viske tegemiseks 20 viske korral?
Jah, saab küll. Võimalusi on C20,12.
Lahendame nüüd Bernoulli valemiga ülesande:
kivipallur tabab igal viskel korvi tõenäosusega 0,7. Kui suur on tõenäosus, et Kivipallur 20 viske korral tabab korvi täpselt 12 korda?
Bernoulli valemi järgi
P20,12 = C20,12 · 0,712 · 0,38 = 125970 · 0,712 · 0,38 ≈ 0,11.
Näidisülesanded:
1.Hiina keele test
Kõikidele küsimustele õigesti vastamise tõenäosus on
P40,40 = C40,40·0,2540 = 0,2540 ja
kõikidele küsimustele valesti vastamise tõenäosus on
P40,0 = C40,0·0,7540 = 0,7540.
Vastus: tõenäosus, et kõikidele küsimustele vastatakse valesti, on suurem.
2.Kahe maletaja probleem
Kaks enam-vähem ühesuguse tasemega maletajat pidasid Bastille´i vallutamise aastapäeva puhul 12-partiilise matši. Kumb on tõenäosusem – kas matš lõpeb seisuga 8 : 4 või 7 : 5?
Arvutage vastavad tõenäosused Bernoulli valemiga.
Vastus: seis 7 : 5 on tõenäolisem
Allikas: Bernoulli_valem
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!