Avaldis. Võrrand
Avaldis
Avaldis on eeskiri, mis määrab tehted ja tehete sooritamise järjekorra.
Näiteid arvavaldistest.
2 + 3
3 · (7 – 3) + 2
Avaldisi, mis sisaldavad ka tähti, nimetatakse tähtavaldisteks.
Näiteid tähtavaldistest.
a + b
4 – a
Sulle võivad huvi pakkuda need õppematerjalid:
Liitmine 10 piires
Geomeetria
xy-koordinaatsüsteem
Lahutamine 20 piires
Kirjalik liitmine
Protsendi rakendused igapäevaelus
Väike protsendiamps
Tasandilised kujundid
Kirjalik lahutamine
Peastarvutamine I kooliastmele
Hariliku murru kordamine
Ruutvõrrandi abil lahenduvad tekstülesanded
Kirjeldav statistika
NUPUTAME KOOS! Tasapinnalised kujundid
Ruutvõrrand
Peastarvutamine eelkoolile
Üksliikmed, hulkliikmed ja tehted nendega
Ruutvõrrandi mõiste, ruutvõrrandi lahendivalem, ruutvõrrandi liigid
Ratsionaalavaldised
Numbrilised seosed
Avaldise väärtus
Arvavaldise väärtuse leidmiseks tuleb teostada avaldises toodud tehted.
Näide 1.
Leiame avaldise 2 + 6 väärtuse.
2 + 6 = 8
Avaldise väärtus on 8.
Näide 2.
Leiame avaldise 4 · ( 2 + 3) : 2 väärtuse.
4 · (2 + 3) : 2 = 10
Avaldise väärtus on 10.
Võrdus
Võrduse moodustavad kaks võrdusmärgiga ühendatud avaldist.
Näiteid.
Järgnevad võrdused on arvvõrdused.
3 + 2 = 5
9 – 3 = 6
1 + 1 = 5 – 3
Järgnevad võrdused on tundmatut sisaldavad võrdused.
3 + a = 12 – 5
4 : b = 2
12 – 2 · m = 3 + 1
Tundmatut sisaldavat võrdust nimetatakse võrrandiks.
Võrdus võib olla tõene või väär.
Näiteid.
3 + 2 = 5 on tõene arvvõrdus.
6 + 1 = 2 on väär arvvõrdus.
Võrduse omadused näitavad, millal saadakse tõesest võrdusest tõene võrdus.
Võrrand
Võrrand on võrdus, mis sisaldab tundmatut.
Tundmatu leidmist võrrandist nimetatakse võrrandi lahendamiseks.
Võrrandist leitud tundmatu väärtus on võrrandi lahend.
Näide 1.
Võrrand on 6 + x = 10.
Võrrandi lahend x = 4, sest 6 + 4 = 10.
Võrrandit on lihtsam koostada, kui ülesande vormistamisel kirjutada iga tekstilõigu juurde vastav matemaatiline avaldis.
Näide 2.
Näide 3.
Võrratus
Võrratuse moodustavad kaks võrratusmärgiga ühendatud avaldist.
Võrratusmärgid on > (loetakse: on suurem) ja < (loetakse: on väiksem).
Näiteid võrratustest.
6 < 12
a > b
3 + 5 > a
Võrratusi lahendatakse selles kooliastmes põhiliselt proovimise teel, sest võrratuse omadusi ei ole veel tundma õpitud.
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!