Integraal

Integreerimine koos oma pöördtehte diferentseerimisega on üks matemaatilise analüüsi baasmõistetest.

Määratud integraal reaalmuutuja funktsioonist f(x) lõigul [a,b] on suurus

Integraal

mida võib tõlgendada kui funktsiooni f(x) graafiku ja x-teljega piiratud pinna pindala. Pindala loetakse negatiivseks, kui f(x) on negatiivne ja positiivseks, kui f(x) on positiivne.

Sulle võivad huvi pakkuda need õppematerjalid:

Algebralised murrud

alates 5.90 €
9. klass, Iseõppijale, Matemaatika

Tasandilised kujundid

alates 2.90 €
9. klass, Iseõppijale, Matemaatika

Liitmine ja lahutamine 20 piires

alates 4.90 €
1. klass, 2. klass, Iseõppijale, Matemaatika

Ruutjuur, tehted ruutjuurtega

alates 0.90 €
9. klass, Iseõppijale, Matemaatika

Protsendid põhikooli matemaatikas

alates 5.90 €
6. klass, 7. klass, 8. klass, 9. klass, Iseõppijale, Täiendõppijale, Matemaatika

II kooliastme matemaatika reeglite kordamine

alates 4.90 €
4. klass, 5. klass, 6. klass, Iseõppijale, Matemaatika

Kell ja kellaaeg

alates 2.90 €
1. klass, 2. klass, Eelkool, Iseõppijale, Matemaatika

Peastarvutamine I kooliastmele

alates 2.90 €
1. klass, 2. klass, 3. klass, Iseõppijale, Matemaatika

Lahutamine 20 piires

alates 2.90 €
1. klass, 2. klass, Iseõppijale, Matemaatika

Geomeetria

alates 6.90 €
9. klass, Iseõppijale, Matemaatika

Numbrilised seosed

alates 2.90 €
9. klass, Iseõppijale, Matemaatika

Kirjalik liitmine

alates 1.90 €
1. klass, 2. klass, 3. klass, Iseõppijale, Matemaatika

Ratsionaalavaldised

alates 6.90 €
9. klass, Iseõppijale, Matemaatika

Harjutusülesandeid matemaatika riigieksamiks

alates 2.90 €
Gümnaasium, Iseõppijale, Matemaatika

Liitmine ja lahutamine 10 piires

alates 4.90 €
1. klass, Eelkool, Iseõppijale, Matemaatika

Funktsioonid ja nende graafikud

alates 6.90 €
9. klass, Iseõppijale, Matemaatika

Ruutvõrrand

alates 6.90 €
9. klass, Iseõppijale, Matemaatika

Funktsioonide graafikud

alates 2.90 €
9. klass, Iseõppijale, Matemaatika

Ruutvõrrandi abil lahenduvad tekstülesanded

alates 1.90 €
9. klass, Iseõppijale, Matemaatika

Hariliku murru kordamine

alates 2.90 €
9. klass, Iseõppijale, Matemaatika

Määramata integraal reaalmuutuja funktsioonist f(x) on funktsioon

Integraal1

kus tuletis F’(x) = f(x). Määramata integraali tundmine võimaldab arvutada määratud integraali:

Integraal2

Viimast võrdust nimetatakse Newtoni-Leibnizi valemiks.

Kui on antud funktsioon, siis võime leida tema tuletise, näiteks: liikumise võrrandi järgi saab leida kiirust, mis võrdub  teepikkuse tuletisega aja järgi, joone võrrandi põhjal saab tuletise abil leida selle joone puutuja  tõusu jne. Aga sageli on vaja lahendada vastupidist ülesannet: keha liikumise kiiruse valemi järgi leida liikumise võrrand, joone puutuja tõusu järgi leida joone võrrand jne. Sellistel juhtudel on vaja leida funktsioon, mille tuletis on teada. Siin tuleb appi integraal, sest integreerimine on diferentseerimise pöördtehe.

Funktsiooni F(x) nimetatakse funktsiooni f(x) algfunktsiooniks, kui F(x)’=f(x). Funktsioooni f(x) algfunktsiooni leidmist nimetatakse integreerimiseks (integration, antidifferentation).

 

Diferentseerimine võimaldab leida ümbritsevas reaalsuses toimuva nähtuse, protsessi intensiivsust (näit. suuruse muutumise kiirus), kui on teada seda nähtust kirjeldav matemaatiline mudel.

Integreerimine võimaldab leida nähtust, protsessi kirjeldavat matemaatilist mudelt, kui on teada nähtuse kulgemise intensiivus, protsessi kirjeldava suuruse muutumise kiirus.

See artikkel on retsenseerimata.
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!
00:00