Ositi integreerimine
Teiseks integreerimist lihtsustavaks võtteks on ositi integreerimise võte, mille eesmärgiks on uute muutujate sissetoomisega jõuda lihtsamate integreeritavate avaldisteni. Ositi integreerimise valem:
Ositi integreerimist kasutatakse selliste funktsioonide korral, kus integreeritavaks avaldiseks on xnex, xnsinx, xncosx, xnlnx või mõne trigonomeetrilise funktsiooni pöördfunktsioon. Sel juhul valitakse u = xn, kus n on naturaalarv.
Sulle võivad huvi pakkuda need õppematerjalid:
Liitmine 10 piires
Geomeetria
xy-koordinaatsüsteem
Lahutamine 20 piires
Kirjalik liitmine
Protsendi rakendused igapäevaelus
Väike protsendiamps
Tasandilised kujundid
Kirjalik lahutamine
Peastarvutamine I kooliastmele
Hariliku murru kordamine
Ruutvõrrandi abil lahenduvad tekstülesanded
Kirjeldav statistika
NUPUTAME KOOS! Tasapinnalised kujundid
Ruutvõrrand
Peastarvutamine eelkoolile
Üksliikmed, hulkliikmed ja tehted nendega
Ruutvõrrandi mõiste, ruutvõrrandi lahendivalem, ruutvõrrandi liigid
Ratsionaalavaldised
Numbrilised seosed
See ei lahenda ülesannet lõpuni, vaid taandab ühe integraali () leidmise teise integraali (
) leidmisele.
Ositi integreerimist kasutatakse tavaliselt siis, kui integraali all on kahe funktsiooni korrutis, millest üks on kas
- astme- või eksponent- või trigonomeetriline funktsioon;
- arkus- või logaritmfunktsioon.
Näited:
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!