HULKLIIKME TEGURDAMINE
Hulkliikme tegurdamine tähendab hulkliikme ehk summa esitamist korrutisena.
- Ühise liikme sulgude ette toomine
Ühiseks teguriks võetakse üks liige, millega jaguvad kõik avaldise liikmed ja mis sisaldab kõiki võimalikke ühiseid tegureid.
Valem: ab + ac = a(b + c)
Näide: 2ab + 4a2c = 2a (b + 2ac)
- Korrutamise abivalemid:
Näited:
k2 – s2 = (k – s)(k + s)
Sulle võivad huvi pakkuda need õppematerjalid:
Peastarvutamine eelkoolile
Protsendid põhikooli matemaatikas
Funktsioonid ja nende graafikud
Funktsioonide graafikud
Funktsioonide graafikute lõikepunktide leidmine
Algebralised murrud
Kell ja kellaaeg
Peastarvutamine I kooliastmele
Väike protsendiamps
Ruutvõrrandi mõiste, ruutvõrrandi lahendivalem, ruutvõrrandi liigid
Kirjalik lahutamine
Ratsionaalavaldised
Liitmine ja lahutamine 10 piires
Numbrilised seosed
Lahutamine 20 piires
Protsendi rakendused igapäevaelus
Liitmine 20 piires
Liitmine ja lahutamine 20 piires
8. klassi matemaatika teooriavideod
Hariliku murru kordamine
2us2 – 8uv2 = 2u(s2 – 4v2) = 2u(s – 4v)(s + 2v)
4 + 12c + 9c2 = (2 + 3c)2 = (2 + 3c)(2 + 3c)
2x3 + 8x2y + 8xy2 =2x(x2 + 4xy + 4y2) = 2x(x + 2y)2 = 2x(x + 2y)(x + 2y)
u2 – 2uv + v2 =(u – v)2 = (u –v)(u –v)
3x2y – 6xy +3y = 3y(x – 1)2 = 3y(x – 1)(x – 1)
Ruutkolmliikme tegurdamine
Ruutkolmliikme tegurdamist kasutan siis, kui kui on 3 liiget, aga korrutamise abivalemeid ei saa kasutada.
- Panen ruutkolmliikme võrduma nulliga.
- Lahendan ruutvõrrandi (leian x1 ja x2).
- Kirjutan ruutkolmliikme lahti tegurite korrutisena:
Taandatud ruutvõrrandi puhul:
x2 + px + q = (x – x1)(x – x2)
Taandamata ruutvõrrandi puhul:
ax2 + bx + c = a(x – x1)(x –x2)
Näide 1: x2 – 5x – 6
x2 – 5x – 6 = 0
x1 = –1ja x2 = 6
x2 – 5x – 6 = (x + 1)(x – 6)
Näide 2: 2x2 – 5x – 3
2x2 – 5x – 3 = 0
x1 = – 0,5 ja x2 = 3
2x2 – 5x – 3 = 2(x + 0,5)(x – 3) = (2x + 1)(x – 3)
Lisaks:
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!