HULKLIIKME TEGURDAMINE
Hulkliikme tegurdamine tähendab hulkliikme ehk summa esitamist korrutisena.
- Ühise liikme sulgude ette toomine
Ühiseks teguriks võetakse üks liige, millega jaguvad kõik avaldise liikmed ja mis sisaldab kõiki võimalikke ühiseid tegureid.
Valem: ab + ac = a(b + c)
Näide: 2ab + 4a2c = 2a (b + 2ac)
- Korrutamise abivalemid:
Näited:
k2 – s2 = (k – s)(k + s)
Sulle võivad huvi pakkuda need õppematerjalid:
Geomeetria
Kirjeldav statistika
Liitmine ja lahutamine 20 piires
Kell ja kellaaeg
Ratsionaalavaldised
Liitmine 10 piires
Liitmine ja lahutamine 10 piires
Funktsioonide graafikud
Valik harjutusülesandeid matemaatika riigieksamiks
Väike algebraamps
Funktsioonide graafikute lõikepunktide leidmine
Lahutamine 20 piires
Ruutjuur, tehted ruutjuurtega
Peastarvutamine I kooliastmele
Ruutvõrrand
Protsendid põhikooli matemaatikas
xy-koordinaatsüsteem
II kooliastme matemaatika reeglite kordamine
8. klassi matemaatika teooriavideod
Üksliikmed, hulkliikmed ja tehted nendega
2us2 – 8uv2 = 2u(s2 – 4v2) = 2u(s – 4v)(s + 2v)
4 + 12c + 9c2 = (2 + 3c)2 = (2 + 3c)(2 + 3c)
2x3 + 8x2y + 8xy2 =2x(x2 + 4xy + 4y2) = 2x(x + 2y)2 = 2x(x + 2y)(x + 2y)
u2 – 2uv + v2 =(u – v)2 = (u –v)(u –v)
3x2y – 6xy +3y = 3y(x – 1)2 = 3y(x – 1)(x – 1)
Ruutkolmliikme tegurdamine
Ruutkolmliikme tegurdamist kasutan siis, kui kui on 3 liiget, aga korrutamise abivalemeid ei saa kasutada.
- Panen ruutkolmliikme võrduma nulliga.
- Lahendan ruutvõrrandi (leian x1 ja x2).
- Kirjutan ruutkolmliikme lahti tegurite korrutisena:
Taandatud ruutvõrrandi puhul:
x2 + px + q = (x – x1)(x – x2)
Taandamata ruutvõrrandi puhul:
ax2 + bx + c = a(x – x1)(x –x2)
Näide 1: x2 – 5x – 6
x2 – 5x – 6 = 0
x1 = –1ja x2 = 6
x2 – 5x – 6 = (x + 1)(x – 6)
Näide 2: 2x2 – 5x – 3
2x2 – 5x – 3 = 0
x1 = – 0,5 ja x2 = 3
2x2 – 5x – 3 = 2(x + 0,5)(x – 3) = (2x + 1)(x – 3)
Lisaks:
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!



