TEHTED HULKLIIKMETE JA ÜKSLIIKMETEGA

9. klass > Matemaatika > Põhikooli matemaatika eksamiks kordamine

Avaldiste teisendamisel kehtivad ka valemid:

64

Algebralise avaldise, üks- ja hulkliikme mõiste:

Algebraline avaldis on avaldis, mille väärtuse leidmiseks kasutatakse lõplik arv kordi vaid nelja aritmeetika põhitehet (liitmist, lahutamist, korrutamist, jagamist) ning astendamist ja juurimist täisarvulise astendaja ja juurijaga.

Näiteks: 2a+4a2

Üksliikmeks nimetatakse reaalarvulise teguri ja ühe või mitme muutuja naturaalarvulise astendajaga astme korrutist.

Näiteks: -5a3b

Hulkliikmeks nimetatakse üksliikmete liitmisel ja lahutamisel saadud avaldist.

Üksliikme kordajaks nimetatakse üksliikmes esinevat reaalarvulist tegurit. Kui tegur võrdub ühega, siis jäetakse ta kirjutamata. Üksliikme kordaja märki (+ või −) nimetatakse üksliikme märgiks. Üksliikme astmeks nimetatakse temas olevate muutujate astendajate summat.

Näiteks:

−7xyz3 on viienda astme üksliige, sest muutujate astendajate summa on 1 + 1 + 3 = 5;

2a on esimese astme üksliige, sest a astendaja on 1;

Üksliige 53 on nullinda astme üksliige, sest muutujat pole, ehk muutuja astendaja on 0.

 

Allikas ja test:

 

Sarnased üksliikmed, nende koondamine

Üksliikmeid nimetatakse sarnasteks, kui nad üksteisest üldse ei erine või kui nad erinevad ainult kordaja poolest.

Näiteks: Sarnased üksliikmed on 5a2bc4 ja (−0,2)7a2bc4 ning xy ja xy, kuid sarnased ei ole 2xy2 ja 2x2y.

Üksliikmete liitmisel ja lahutamisel saadud avaldist nimetatakse üksliikmete algebraliseks summaks ehk hulkliikmeks. Nii on avaldis 2x2 + 4xy − 0,75xyz − 12 hulkliige.

Üksliikmete koondamiseks nimetatakse sarnaste liikmete algebralise summa asendamist sellise liidetavatega sarnase üksliikmega, mille kordaja on võrdne liidetavate üksliikmete kordajate summaga.

Näide: koondades sarnased üksliikmed summas 2xy − 5xy + 6xy tuleb asendada see üksliikmega (2 − 5 + 6)xy = 3xy.

Hulkliikme koondamine tähendab antud hulkliikme esitamist kujul, milles kõik sarnased üksliikmed on koondatud.

Näide: koonda hulkliikmed:

4x2 − 3x + 7 − 8x2 + x − 2 = −4x2 − 2x + 5

3xy2 + 5x − 6xy2 − 2xy + 2xy2 − 5xy − z = −xy2 − 7xy + 5x − z.

 

Allikas ja test:

Tehted üks- ja hulkliikmetega

Järgnevalt esitatakse näiteülesanded tehetest üks- ja hulkliikmetega.

1. Hulkliikmete summa ja vahe.

(5x2 − 4x + 3) − (3x2 − x + 2) = avame sulud

= 5x2 − 4x + 3 − 3x2 + x − 2 = koondame sarnased liidetavad (samavärvilised liidame-lahutame)

= 2x2 − 3x + 1

2. Üksliikme korrutamine üksliikmega.

6x3yz2⋅(−2xz2) = korrutame kordajad (arvud) omavahel, x-d omavahel, y-d omavahel ja z-d omavahel

= 6⋅(−2)x3⋅x⋅y⋅z2⋅z2=

= −12x4yz4

3. Hulkliikme korrutamine üksliikmega.

a) (6x2 + 2xy 3y2) ⋅ (−2x) = korrutame esimeste sulgude iga liikme teise suluga

= (6x2) ⋅ (−2x) + (2xy) ⋅ (−2x) + (−3y2) ⋅ (−2x) = korrutame üksliikmed

= −12x3 + (−4x2y) + 6xy2 = −12x3 − 4x2y + 6xy2

b) (−1) ⋅ (x7 + 2x − 3) = −(x7 + 2x − 3) = −x7 − 2x + 3

4. Hulkliikme korrutamine hulkliikmega.

(2x − y)(x3 + y2 − 2xy) = teiste sulgude iga liikme korrutame 2x-ga ja seejärel korrutame teiste sulgude iga liikme -y-ga

=(2x)⋅(x3) + (2x)⋅(y2) + (2x)⋅(−2xy) + (−y)⋅(x3) + (−y)⋅(y2) + (−y)⋅(−2xy) = korrutame üksliikmed

=2x4 + 2xy2 + (−4x2y) + (−x3y) + (−y3) + 2xy2 = koondame sarnased liikmed (no allajoonitud), avame sulud

= 2x4 + 4xy2 − 4x2y − x3y − y3

5. Üksliikme jagamine üksliikmega. (Tulemus ei ole alati üksliige)

6x2y4: (−2xy) = −3xy3 Siin jagati kordajad omavahel, x-ga liikmed omavahel, y-ga liikmed omavahel

4xy2 : (−2xy3z) = −2y−1z−1 (ei ole üksliige, sest on negatiivne astendaja vastuses, mille tähendus on 68 jne)

6. Hulkliikme jagamine üksliikmega.

(5x3 − 6x2 + 7) : x = jagame hulkliikme iga liikme x-ga

=(5x3) : x + (−6x2) : x + 7 : x =

=5x2 − 6x69

7. Üksliikme astendamine.

(−2x2y3z)4 = üksliikme iga liige astendatakse neljaga

=(−2)4⋅(x2)4⋅(y3)4⋅z4 = vajadusel vaadake astendamise reegleid eestpoolt (Sarnased üksliikmed, kordamine)

= 16x8y12z4

8. Hulkliikme astendamine.

a) (2a − 5)3 = kuup tähendab, et tuleb astendatavat (siin siis sulge) korrutada iseendaga kolm korda

=(2a − 5)⋅(2a − 5)⋅(2a − 5) = korrutame esimesed kaks sulgu kokku

= (4a2 − 10a − 10a + 25) ⋅ (2a − 5) = koondame esimeses sulus kaks keskmist liiget

(4a2 − 20a + 25) ⋅ (2a − 5) = korrutame need hulkliikmed (sulud), selleks korrutame esimeste sulgude esimese liikmega teised sulud ja siis esimese sulu teise liikmega teised sulud ja lõpuks esimese sulu kolmanda liikmega teised sulud

= 8a3 − 20a2 − 40a2 + 100a + 50a − 125 = koondame sarnased liikmed

= 8a3 − 60a2 + 150a − 125

b) (a + b + c)2 = (a + b + c)⋅(a + b + c) =

= a2 + ab + ac + ba + b2 + bc + ca + cb+ c2 =

=a2 + b2 + c2 + 2ab + 2ac + 2bc

 

Allikas ja testid:

Testid: