Trigonomeetrilised võrrandid
Trigonomeetrilisteks võrranditeks nimetatakse võrrandeid, kus tundmatu on trigonomeetrilise funktsiooni argumendis.
Keerukamate trigonomeetriliste võrrandite puhul teisendatakse tundmatut sisaldavaid avaldisi seni, kuni võrrandi lahendamine taandub ühe või mitme trigonomeetrilise põhivõrrandi lahendamisele.
Sulle võivad huvi pakkuda need õppematerjalid:
8. klassi matemaatika teooriavideod
Kirjalik lahutamine
Allar Veelmaa videotund. Avaldised
Väike protsendiamps
Kirjeldav statistika
Ruutvõrrand
Algebralised murrud
Liitmine 20 piires
Ruutjuur, tehted ruutjuurtega
Protsendid põhikooli matemaatikas
Peastarvutamine I kooliastmele
NUPUTAME KOOS! Tasapinnalised kujundid
Funktsioonide graafikud
Valik harjutusülesandeid matemaatika riigieksamiks
Liitmine ja lahutamine 20 piires
Ruumilised kujundid
Ruutvõrrandi mõiste, ruutvõrrandi lahendivalem, ruutvõrrandi liigid
Liitmine 10 piires
Ruutvõrrandi abil lahenduvad tekstülesanded
Ratsionaalavaldised
Trigonomeetriliste võrrandite lahendeid on mõistlik kontrollida, sest teisenduste käigus (näiteks võrduse poolte ruutu tõstmisel) võivad tekkida võõrlahendid. Võrduse poolte jagamisel ühe ja sama avaldisega tuleb veenduda selles, et nii tehes osa lahenditest kaotsi ei läheks.
Märkus: lihtsate trigonomeetriliste võrrandite lahendamisel ei ole vaja kasutada üldist lahendivalemit (kuid võib). Liites (lahutades) n-kordse perioodi pikkuse, saame jällegi lähtevõrrandi lahendi. Sõltuvalt võrrandi lahendamisel kasutatud võtetest ei pruugi lahendid esituda ühesel viisil.
Allikas: Allar Veelmaa
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!