Trigonomeetrilised võrrandid
Trigonomeetrilisteks võrranditeks nimetatakse võrrandeid, kus tundmatu on trigonomeetrilise funktsiooni argumendis.
Keerukamate trigonomeetriliste võrrandite puhul teisendatakse tundmatut sisaldavaid avaldisi seni, kuni võrrandi lahendamine taandub ühe või mitme trigonomeetrilise põhivõrrandi lahendamisele.
Sulle võivad huvi pakkuda need õppematerjalid:
Algebralised murrud
Tasandilised kujundid
Liitmine ja lahutamine 20 piires
Ruutjuur, tehted ruutjuurtega
Protsendid põhikooli matemaatikas
II kooliastme matemaatika reeglite kordamine
Kell ja kellaaeg
Peastarvutamine I kooliastmele
Lahutamine 20 piires
Geomeetria
Numbrilised seosed
Kirjalik liitmine
Ratsionaalavaldised
Harjutusülesandeid matemaatika riigieksamiks
Liitmine ja lahutamine 10 piires
Funktsioonid ja nende graafikud
Ruutvõrrand
Funktsioonide graafikud
Ruutvõrrandi abil lahenduvad tekstülesanded
Hariliku murru kordamine
Trigonomeetriliste võrrandite lahendeid on mõistlik kontrollida, sest teisenduste käigus (näiteks võrduse poolte ruutu tõstmisel) võivad tekkida võõrlahendid. Võrduse poolte jagamisel ühe ja sama avaldisega tuleb veenduda selles, et nii tehes osa lahenditest kaotsi ei läheks.
Märkus: lihtsate trigonomeetriliste võrrandite lahendamisel ei ole vaja kasutada üldist lahendivalemit (kuid võib). Liites (lahutades) n-kordse perioodi pikkuse, saame jällegi lähtevõrrandi lahendi. Sõltuvalt võrrandi lahendamisel kasutatud võtetest ei pruugi lahendid esituda ühesel viisil.
Allikas: Allar Veelmaa
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!