Permutatsioonid, kombinatsioonid, variatsioonid
Permutatsioonid on n elemendilise hulga elementidest moodustatud n-elemendilised järjestatud osahulgad.
Permutatsioonide arv leitakse valemiga Pn = n!
Kirjutist n! loetakse – “n faktoriaalis” ja arvutatakse järgmise reegli järgi:
n! = 1 · 2 · 3 … (n – 1) · n.
Jätke meelde, et 0! = 1 ja 1! = 1.
Sulle võivad huvi pakkuda need õppematerjalid:
Üksliikmed, hulkliikmed ja tehted nendega
Algebralised murrud
Ruutvõrrandi abil lahenduvad tekstülesanded
8. klassi matemaatika teooriavideod
Ratsionaalavaldised
Ruutvõrrand
Funktsioonide graafikud
Liitmine ja lahutamine 20 piires
Funktsioonid ja nende graafikud
Peastarvutamine I kooliastmele
Tasandilised kujundid
Protsendid põhikooli matemaatikas
xy-koordinaatsüsteem
Liitmine ja lahutamine 10 piires
Kirjalik liitmine
II kooliastme matemaatika reeglite kordamine
Harjutusülesandeid matemaatika riigieksamiks
Ruutjuur, tehted ruutjuurtega
Kirjalik lahutamine
Numbrilised seosed
Näited:
1) 1! = 1, 3! = 1 · 2 · 3 = 6 ja 5! = 1 · 2 · 3 · 4 · 5 = 120.
2) Neljast tähest (k, a, r, u) on võimalik moodustada tähtede ümberpaigutamise teel 4! = 24 erinevat sõna.
3) 13 õpilasega klassis on võimalik teha 13! = 6227020800 erineva järjestusega õpilaste nimekirja.
Kombinatsioonid n-elemendist k-kaupa on n-elemendilise hulga k-elemendilised osahulgad.
Kombinatsioonide arvu leidmisel elementide järjestus pole oluline, s.t. kui kombinatsioon {Jüri, Mari} on olemas, siis {Mari, Jüri} eraldi kombinatsioonina arvesse ei lähe.
Näited:
1) kümnest inimesest on võimalik moodustada erinevaid kolmeliikmelisi rühmi .
2) 30 õpilasega klassis on võimalik kaks korrapidajat ametisse määrata erineval viisil.
Variatsioonid n elemendist k kaupa on n-elemendilise hulga k-elemendilised järjestatud osahulgad.
Näited:
1) 30 lehekandja hulgast on võimalik ametisse määrata lehekandja ja vanemlehekandja erineval viisil;
2) kuueliikmelisest võistkonnast saab neli teatesuusatajat välja valida erineval viisil.
Märkasid viga? Anna sellest teada ja teeme TaskuTarga koos paremaks!